CRYPTOCARYALACTONE, A NOVEL 5,6-DIHYDRO-2H-PYRAN-2-ONE FROM CRYPTOCARYA BOURDILLONI GAMB.

T.R. Govindachari and P.C. Parthasarathy

CIBA Research Centre, Goregaon, Bombay 63, India.

(Received in UK 26 July 1971; accepted in UK for publication 4 August 1971)

A new lactone has been isolated from the roots of Cryptocarya bourdilloni Gamb. (Lauraceae), for which we wish to assign structure I based on the following evidence: Cryptocaryalactone, $C_{17}^H_{18}O_4$, M^+ 286, m.p.124-126°, C_{10}^{25} + 15.55° (C_{10}^{25} = 2.52 in CHOl₃) exhibits spectral properties suggestive of the presence of an acetoxyl group, a styryl moiety and an C_{10}^{25} , C_{10}^{25} , and 1705 cm⁻¹ (6-memb. C_{10}^{25} , C_{10}^{25} , C_{10}^{25}) and 1705 cm⁻¹ (6-memb. C_{10}^{25} , C_{10}^{25} , C_{10}^{25}) and 1705 cm⁻¹ and a 5-proton multiplet in MMR† spectrum at 7.23 indicate the presence of a monosubstituted benzene ring. Strong infrared absorption at 965 cm⁻¹ is assigned to the trans-disubstituted double bond while the UV spectrum (C_{10}^{25}) and (C_{10}^{25}), C_{10}^{25} , 283 and 292 nm (C_{10}^{25}), C_{10}^{25} 0, C_{10}^{25} 1 and the decoupling experiments described in Table I support the structure I assigned for cryptocaryalactone.

$$c_{6}H_{5}-c_{0}=c_{0}+c_{0}H_{0}-c_{0}H_{2}$$

$$c_{6}H_{5}-c_{0}=c_{0}+c_{0}H_{0}-c_{0}H_{2}$$

$$c_{6}H_{5}-c_{0}=c_{0}+c_{0}H_{2}-c_{0}H_{2}$$

$$c_{6}H_{5}-c_{0}=c_{0}+c_{0}H_{2}-c_{0}H_{2}$$

$$c_{6}H_{5}-c_{0}=c_{0}+c_{0}H_{2}-c_{0}H_{2}$$

$$c_{6}H_{5}-c_{0}+c_{0}H_{2}-c_{0}H_{2}-c_{0}H_{2}-c_{0}H_{2}$$

$$c_{6}H_{5}-c_{0}+c_{0}H_{2}-c_$$

Contribution No. 260 from CIBA Research Centre

[†] NMR spectra were recorded with a Varian HA-100-D spectrometer in CDCl3; Symbols s, m and q represent singlet, multiplet and quartet, respectively. All shifts are reported as ppm in & values.

Pro ton	Chemical shift in CDCl ₃ (ppm)	Multiplicity	Coupling constant
OCOCH	2.05	S	•
*c-7 H2	2.15	10.	-
**0-5 <u>H</u> 2	2.38	m.	-
†c-6 <u>H</u>	4.55	10 .	-
Ťσ_8 <u>π</u>	5.65	m	-
0-3 <u>H</u>	5.99	sextet	J = 2 and 10 Hz
0− 9 <u>H</u>	6.10	Q.	J = 7 and 16 Hz
C-10 <u>H</u>	6.67	đ	J = 16 Hz
C-4 <u>H</u>	6.83	sextet	J = 4.5 and 10 Hg
0 <mark>6∓</mark> 5	7.23	m	-

TABLE I: NMR and Decoupling data on Cryptocaryalactone

In consonance with structure I, cryptocaryalactone exhibits in the mass spectrum peaks at m/e 97 (a, $C_5H_50_2$, 49.4%), 69 (b, C_4H_50 , 18.1%), 68 (c, C_4H_40 , 21.7%), 77 (phenyl, C_6H_5 , 16.9%), 91 (tropylium, C_7H_7 , 21.7%), 115 (indenyl, C_9H_7 , 30.1%) and 131 (benzopyrilium, C_9H_70 , 81.9%). It is pertinent to note that cryptocaryalactone represents the first example of a naturally occurring Kawa-type lactone arising by the condensation of three acetate units to cinnamic acid. Work to resolve the absolute stereochemistry of cryptonaryalactone is in progress.

Acknowledgement: We wish to thank Dr. H. Fuhrer, CIBA-GEIGY Ltd., Basle, for 100 MHz NMR spectrum and decoupling experiments. We thank Dr. S. Selvavinayakam and his staff for the analytical and spectral data.

^{*}On irradiation of C-7 \underline{H}_2 , C-8 \underline{H} becomes a doublet with J = 7 Hz; C-6 \underline{H} multiplet has also simplified.

^{**} Upon irradiation of C-5 \underline{H}_2 , C-4 \underline{H} degenerate to a doublet with $J=10~\mathrm{Hz}$; C-6 \underline{H} multiplet has also simplified.

[†] On irradiation of C-6 \underline{H} , both C-5 \underline{H}_2 and C-7 \underline{H}_2 have simplified.

^{††} Irradiation of C-8 \underline{H} results in the appearance of C-9 \underline{H} as a doublet with J = 16 Hz